A Virtual Data Grid for LIGO

Ewa Deelman, Carl Kesselman
Information Sciences Institute, University of Southern California

Roy Williams
Center for Advanced Computing Research, California Institute of Technology

Albert Lazzarini, Thomas A. Prince
LIGO experiment, California Institute of Technology

Joe Romano
Physics, University of Texas, Brownsville

Bruce Allen
Physics, University of Wisconsin

Abstract. GriPhyN (Grid Physics Network) is a large US collaboration to
build grid services for large physics experiments, one of which is LIGO, a
gravitational-wave observatory. This paper explains the physics and comput-
ing challenges of LIGO, and the tools that GriPhyN will build to address
them. A key component needed to implement the data pipeline is a virtual
data service; a system to dynamically create data products requested during
the various stages. The data could possibly be already processed in a certain
way, it may bein afile on a storage system, it may be cached, or it may need
to be created through computation. Thefull elaboration of this system will al-
low complex data pipelines to be set up as virtual data objects, with existing
data being transformed in diverse ways.

This document is a data-computing view of a large physics observatory (LIGO), with
plans for implementing a concept (Virtual Data) by the GriPhyN collaboration in its
support. There are three sections:

» Physics: what datais collected and what kind of analysisis performed on the data.

» The Virtual Data Grid, which describes and elaborates the concept and how it is
used in support of LIGO.

» TheGriPhyN Layer, which describes how the virtual datawill be stored and han-
died with the use of the Globus Replica Catal og and the M etadata Catal og.

1 Physics

LIGO (Laser Interferometer Gravitational-Wave Observatory) [1] is a joint Caltech/
MIT project to directly detect the gravitational waves predicted by Einstein's theory of
relativity: oscillationsin the fabric of space-time. Currently, there aretwo observatories
in the United States, (Washington state and Louisiana), one of which recently went
through the “first lock” phase, in which initial calibration data was collected. Theoreti-
cally, gravitational waves are generated by accelerating masses, however they are so
weak that so far they have not been directly detected (although their indirect influence

has been inferred [2]). Because of the extreme weakness of the signals, large data-com-
puting resources are needed to extract them from noise and differentiate astrophysical
gravitational waves from locally-generated interference.

Some phenomena expected to produce gravitational waves are:

» Coalescence of pairs of compact objects such as black-holes and neutron stars. As
they orbit, they lose energy and spiral inwards, with a characteristic “chirp” over
several minutes. Estimates predict of order one observation per year for the cur-
rent generation of detectors.

» Continuous-wave signals over many years, from compact objects rotating asym-
metrically. Their weakness implies that deep computation will be necessary.

» Supernova explosions — the search may be triggered by observation from tradi-
tional astronomical observatories.

» “Starquakes’ in neutron stars.
» Primordial signals from the very birth of the Universe.

LIGO’sinstruments are laser interferometers, operating in a 4km high-vacuum cavity,
and can measure very small changes in length of the cavity. Because of the high sensi-
tivity, phenomena such as seismic and acoustic noise, magnetic fields, or laser fluctua-
tions can swamp the astrophysical signal, and must themselves be instrumented. Com-
puting is crucial to digitally remove the spurious signals and search for significant pat-
terns in the resulting multi-channel time-series.

Theraw datais a collection of time series sampled at various frequencies (e.g., 16kHz,
16Hz, 1Hz, etc.) with the amount of data expected to be generated and catalogued each
year is in the order of tens of terabytes. The data collected represents a gravitational
channel (less than 1% of all data collected) and other instrumental channels produced
by seismographs, acoustic detectors etc. Analysis on the datais performed in both time
and frequency domains. Requirements are to be able to perform single channel analysis
over along period of time as well as multi-channel analysis over a short time period.

1.1 Datain LIGO

Each scalar time seriesisrepresented by a sequence of 2-byte integers, though some are
4-byteintegers. Timeisrepresented by GPStime, the number of seconds since an epoch
in 1981, and it is therefore a 9-digit number, possibly followed by 9 more digits for na-
nosecond accuracy (it will become 10 digits in Sept. 2011). Data is stored in Frame
files, a standard format accepted throughout the gravitational wave community. Such a
file can hold a set of time-series with different frequencies, together with metadata
about channel names, time intervals, frequencies, file provenance, etc. In LIGO, the
Frames containing the raw data encompass an interval of time of one second and result
in about 3Mb of data.

In addition to the raw time series, there are many derived data products. Channels can
be combined, filtered and processed in many ways, not just in the time domain, but also
in the Fourier basis, or others, such as wavelets. Knowledge is finally extracted from
the data through pattern matching algorithms; these create collections of candidate
events, for example, inspiral events or candidate pulsars.

1.2 LIGO Data Objects

The Ligo Data Analysis System (LDAS) [3] isaset of component services for process-
ing and archiving LIGO data. Services deliver, clean, filter, and store data. There is
high-performance parallel computing for real-time inspiral search, storage in a distrib-
uted hierarchical way, arelational database, as well as a user interface based on the Tcl
language.

The LIGO datamodel splits data from metadata explicitly. Bulk datais stored in Frame
files, as explained above, and metadata is stored in a relational database, IBM DB2.
There is also an XML format called LIGO-LW (an extension of XSIL [4]) for repre-
senting annotated, structured scientific data, that is used for communication between
the distributed services of LDAS.

In general, afile may contain more than one Frame, so we define the word FrameFile,
for afilethat may contain many frames. Raw datafiles contain only one frame, and they
are named by the interferometer that produced the data (H: Hanford, L: Livingston),
then the 9-digit GPS time corresponding to the beginning of the data. There is a one or
two letter indication of what kind of dataisinthefile, (F: full, R: reduced, T: trend, etc.).
So an example of araw data frame might be H-276354635_F.

For long-term archiving, rather larger files are wanted than the 3-megabyte, one second
raw frames, so there are collection-based files, generally as multi-frame FrameFiles. In
either case, an additional attributeisin the file name saying how many framesthere are,
for example H-276354635 . F.n200 would be expected to contain 200 frames.

One table of the metadatabase contains FrameSets, which is an abstraction of the
FrameFile concept, recognizing that a FrameFile may be stored in many places: perhaps
on tape at the observatory, on disk in several places, in deep archive.

Each frame file records the names of all of the approximately one thousand channels
that constitute that frame. In general, however, the name set does not change for thou-
sands or tens of thousands of one-second frames. Therefore, we keep a Channel Set ob-
ject, which is alist of channel names together with an ID number. Thus the catalog of
frames need only store the Channel Set ID rather than the whole set of names.

The metadatabase also keeps collections of Events. An event may be a candidate for an
astrophysical event such as a black-hole merger or pulsar, or it may refer to a condition
of the LIGO instrument, the breaking of afeedback loop or the RF signal from a nearby
lightning strike. The generic Event really has only two variables: type and significance
(alsocalled Signal to Noise Ratio, or SNR). Very significant events are examined close-
ly, and insignificant events used for generating histograms and other statistical reports.

1.3 Computational aspects, Pulsar Search

LDAS is designed primarily to analyze the data stream in real time to find inspiral
events, and secondarily to make a long-term archive of a suitable subset of the full
LIGO data stream. A primary focus of the GriPhyN effort is to use this archive for a
full-scale search for continuous-wave sources. This search can use unlimited computing
resources, since it can be done at essentially arbitrary depth and detail. A major objec-
tive and testbed of the GriPhyN involvement is to do this search with backfill computa-

tion (the “SETI@home” paradigm), with high-performance computers in the physics
community.

If amassive, rotating ellipsoid does not have coincident rotational and inertial axes (a
time-dependent quadrupole moment), then it emits gravitational radiation. However,
theradiation isvery weak unlessthe object is extremely dense, rotating quickly, and has
alarge quadrupole moment. While the estimates of such parameters in astrophysically-
significant situations are vague, it is expected that such sources will be very faint. The
search is computationally intensive primarily because it must search a large parameter
space. The principle dimensions of the search space are position in the sky, frequency,
and rate of change of frequency.

The search isimplemented as a pipeline of datatransformations. First steps are cleaning
and reshaping of the data, followed by a careful removal of instrumental artifacts to
make a best estimate of the actual deformation of space-time geometry at the LIGO site.
From this, increasingly specialized data products are made, and new ways to calibrate
and filter the raw and refined data.

The pulsar search problem in particular can be thought of as finding featuresin alarge,
very noisy image. The image isin time-frequency space, and the features are curves of
almost-constant frequency — the base frequency of the pulsar modul ated by the doppler
shifts caused by the motion of the Earth and the pulsar itself.

The pulsar search can be parallelized by splitting the possible frequenciesinto bins, and
each processor searching a given bin. The search involves selecting sky position and
frequency slowing, and searching for statistically-significant signals. Once a pulsar
source has been detected, the result is catalogued as an event data structure, which de-
scribes the pulsar's position in the sky, the signal-to-noise ratio, time etc.

1.4 Event Identification Computation Pipeline

During the search for astrophysical events along duration, one dimensional time series
is processed by a variety of filters. These filters then produce a new time series which
may represent the signal to noise ratio in the data. A threshold is applied to each of the
new time series in order to extract possible events, which are catalogued in the LIGO
database. In order to determineif the event is significant, the raw data containing instru-
mentation channels needs to be re-examined. It is possible that the occurrence of the
event was triggered by some phenomena such as lightning strikes, acoustic noise, seis-
mic activity, etc. These are recorded by variousinstruments present in the LIGO system
and can be found in the raw data channels. To eliminate their influence, theinstrumental
and environmental monitor channels must be examined and compared to the occurrence
of the event. The location of the raw data channels can be found in the LIGO database.
Since the event is pinpointed in time, only small portions of the many channels (that
possibly needs to be processed) need to be examined. This computational pipeline
clearly demonstrates the need for efficient indexing and processing of data in various
views:

» alongtimeinterval single channel data, such astheinitial databeing filtered, and

 the many channel, short time interval such as the instrument data needed to add

confidence to the observation of events.

2 GriPhyN/L1GO Virtual Data Grid

GriPhyN [5] (Grid Physics Network) is a collaboration funded by the US National Sci-
ence Foundation to build tools that can handle the very large (petabyte) scale data re-
quirements of cutting-edge physics experiments. In addition to the LIGO observatory,
GriPhyN workswith the CM S and Atlas experimentsat CERN’ s Large Hadron Collider
[6] and the Sloan Digital Sky Survey [7].

A key component needed to implement the data pipelineisavirtual data service; asys-
tem to dynamically create data products requested during the various stages. The data
could possibly be already processed in a certain way, it may be in a file on a storage
system, it may be cached, or it may need to be created through computation. The full
elaboration of this system will allow complex data pipelinesto be set up as virtual data
objects, with existing data being transformed in diverse ways.

2.1 Virtual Data

Anexample of Virtual Dataisthis: “ Thefirst 1000 digits of Pi” . It defines a data object
without computing it. If this request comes in, we might already have the result in deep
archive: should we get it from there, or just rerun the computation? Another exampleis:
“ Pi to 1000 places’ . How can we decide if these are the same request even though the
words are different? |f someone asks for “ Pi to 30 digits” , but we already have thefirst
two, how can we decide that the latter can be derived easily from the former? These
guestions lie at the heart of the GriPhyN Virtual Data concept.

Inthe extreme, thereis only raw data. Other requests for data, such as obtaining asingle
channel of dataranging over alargetimeinterval, can be derived from the original data
set. At the other extreme, every single data product that has been created (even if it rep-
resents an intermediate step not referred to again) can be archived. Clearly, neither ex-
treme is an efficient solution; however with the use of the Virtual Data Grid (VDG)
technology, one can bridge the two extremes. The raw datais of course kept and some
of the derived data products are archived as well. Additionally, data can be distributed
among various storage systems, providing opportunities for intelligent data retrieval
and replication.

VDG will provide transparent access to virtual data products. To efficiently satisfy re-
quests for data, the VDG needs to make decisions about the instantiation of the various
objects. The following are some examples of VDG support for LIGO data:

» Raw datavs. cleaned datachannels. Most likely, only thevirtual datarepresenting
the most interesting clean channels should be instantiated.

» Data composed from smaller pieces of data, such as long duration frames that
could have been already processed from many short duration frames.

» Time-frequency image, such as the one constructed during the pulsar search.
Most likely the entire frequency-time image will not be archived. However, all its
components (short power spectra) might beinstantiated. The VDG can then com-
pose the desired frequency-time images on demand.

» Interesting events. Given a strong signal representing a particularly promising
event, the engineering data related to the time period of the occurrence of the

event will most likely be accessed and filtered often. In this case, the VDG might
instantiate preprocessed instrumental and environmental data channels, data that
might otherwise exist only in its raw form.

2.2 SimpleVirtual Data Request Scenario

A VDG isdefined by its Virtual Data Domain, meaning the (possibly infinite) set of all
possible data objects that can be produced, together with a naming scheme (“ coordinate
system™) for the Domain. There are functions on the domain that map a name in the do-
main to a data object. The VDG software is responsible for caching and replicating in-
stantiated data objects. In our development of the LIGO VDG, we begin with asimple
Cartesian product domain, and then add complexity.

Let D be the Cartesian product of atimeinterval with a set of channels, and we think of
the LIGO data as a map from D to the value of the channel at a given time. In reality,
of course, it is complicated by missing data, multiple interferometers, data recorded in
different formats, and so on.

In the following, we consider requests for the data from a subdomain of the full domain.
Each request is for the data from a subset of the channels for a subinterval of the full
timeinterval. Thus, arequest might be written in as:

T0=700004893, T1=700007847; IFO_DCDM_1, IFO_Seis_*
where 1FO_DCDM_1 is a channel, and 1F0_Seis_~* is a regular expression on channel
names. Our first task is to create a naming scheme for the virtual data object, each name
being a combination of the name of atime interval and the name of a set of channels.

This could be satisfied if there is a suitable superset file in the replica database, for ex-
ample this one:
T0=70004000, T1=700008000; IFO_*
We need to be ableto decide if agiven Virtual Data Object (VDO) contains another, or
what set of VDO's can be used to create the requested VDO. If C; isasubset of the chan-
nels, and I; is a subinterval, then tools could be used to combine multiple files (Cq,14),
(Cyl), ... perhaps as:
* Thenew filecouldbe(C,), where C =union C; and | =intersect I;, achannel union
tool, or
» The new file could be (C, 1), where C = intersect C; and | = union |;, an interval
union tool.

We could thus respond to requests by composing existing files from the distributed stor-
age to form the requested file.

To be effective, we need to develop a knowledge base of the various transformations
(i.e., how they are performed, which results are temporary, and which need to be per-
sistent). We need to know the nature of the context in which these transformations oc-
cur: something simple is the Fourier transform, but more difficult would a transforma-
tion that uses a certain code, compiled in a certain way, running on a specific machine.
This description of context is needed in order to be able to execute the transformations
on data sets as well as to determine how to describe them.

2.3 Generalized Virtual Data Description

The goal of the GriPhyN Virtual Data Grid system is to make it easy for an application
or user to access data. As explained above, as a starting point we will service requests
consisting of a range of time tyto t; (specified in GPS seconds), followed by a list of
channels. However, we now extend the idea of channel to “virtual channel”.

Virtual Channels

A virtual channel isatime series, like areal channel, but it may be derived from actual
channels, and not correspond to a channel in the raw data. Some examples of virtual
channels are:

* Anactual recorded channel, “raw”.

» An actua recorded channel, but downsampled or resampled to a different sam-
pling rate.

* Anarithmetic combination of channels, for example 2C, + 3C,, where C; and C,
are existing channels.

» The actual channel, convolved with a particular calibration response function,
and scaled. For example, the X component of the accel eration.

» Thevirtual channel might be computed from the actual data channelsin different
ways depending upon what time interval is requested (e.g., the calibrations
changed, the channels were hooked up differently, etc.).

» A virtual channel could be defined in terms of transformations applied to other
virtual channels.

In short, the virtual channels are a set of transformations applied to the raw data.

The set of virtual channels would be extendable by the user. As the project progresses,
one may want to extend the set of virtual channels to include additional, useful trans-
formations. Thus, if a user is willing to define a virtual channel by specifying all the
necessary transformations, it will be entered in the catalog and will be available to all
users, programs, and services. New channels can be created from the raw data channels
by parameterized filters, for example decimation, heterodyning, whitening, principle
components, autocorrelation, and so forth.

Data nhaming

A crucial step in the creation of the GriPhyN Virtual Data model is the naming scheme
for virtual data objects. Semantically, we might think of names as a set of keyword-val-
ue pars, extended by transformations, perhaps something like
(T0=123,T1=456,Chan=[A,B*,C?]) -pca() -decimate(500). Thefirst part in parenthe-
ses is the keyword-value set, the rest is a sequence of (perhaps parameterized) filters.
We could also think of using names that contain an SQL query, or even names that in-
clude an entire program to be executed. The syntax could also be expressed in other
ways, as XML, or with metacharacters escaped to build a posix-like file name. We
could use asyntax like protocol://virtual-data-name to express these different
syntax in one extensible syntax. However, decisions on naming Virtual Data must be
premised on existing schemes described in Section 1.2.

3 GriPhyN Support

The goal of GriPhyN isto satisfy user data reguests transparently. When arequest for a
set of virtual channels spanning a given timeinterval is made, the application (user pro-
gram) does not need to have any knowledge about the actual data location, or even if
the data has been pre-computed. GriPhyN will deliver the requested virtual channels by
either retrieving existing datafromlong term storage, data caches containing previously
requested virtual channels, or by calculating the desired channels from the available
data (if possible).

When satisfying requests from users, data may be in slow or fast storage, on tape, at
great distance, or on nearby spinning disk. The datamay bein small pieces (~1 second)
or in long contiguous intervals (~1 day), and conversion from one to another requires
computational and network resources. A given request for the data from a given time
interval can thus be constructed by joining many local, small files, by fetching a distant
filethat contains the entire interval, or by a combination of these techniques. The heart
of this project is the understanding and solution of this optimization problem, and an
implementation of areal data server using GriPhyN tools.

3.1 User Requests

Theinitial implementation of the GriPhyN system will accept requests in the semantic
form:

t0,tl1; A,B,C...,
where to, t1 isatimeinterval, and A,B,C,... arevirtual channels. We assume that
the order in which the channels are listed does not affect the outcome of the request. The
syntax of the virtual channel is yet to be determined. In the simplest form, a virtual
channel resulting from a transformation Tr, on a channel C, would be Tr,(Cy); addi-
tional attributes (such as transformation parameters or other input channels) can be
specified as additional parametersinthelist: Tr,(Cy, C;; ?,?,), depending on thetrans-
formation. Thetransformation specific information will be stored in the Transformation
Catal og described below.

The semantic content of the request is defined above, but not the syntax. The actual for-
mulation for the GriPhyN-LIGO VDG will be an XML document, though the precise
schemais not yet known. We are intending to implement requests as a very small doc-
ument (for efficiency), but with links to context, so that amachine can create the correct
environment for executing the request. We expect much of the schema development to
be implemented with nested XML namespaces [8].

3.2 Dataaccess, cost performance estimation

When auser or computer issues arequest to the Virtual Data Grid, itisinitially received
by a Request Manager service and sent for processing to the Metadata Catalog, which
provides the set of logical files that satisfies the request, if such exists. The files names
areretrieved from the Metadata Catalog based on a set of attributes.

The logical files found in the Metadata Catalog are sent to the Replica Catalog, which
maps them to a unique file, perhaps the closest in some sense of many such replicas.

The information about the actual file existence and location (provided by the Replica
Catalog) are passed to the Request Manager, which makes a determination about how
to deliver the data.

If the requested data is present, the Request Manager still needs to determine whether
it is cheaper to recalculate the data or access it. When considering the cost of referenc-
ing data, the cost of accessing various replicas of the data (if present) needs to be esti-
mated. If the datais not present, the possibility and cost of data calculation needs to be
evaluated. In order to make these decisions, the Request Manager queries the Informa-
tion Catalog. The latter can provide information about the available computational re-
sources, network latencies, bandwidth, etc.

The next major service is the Request Planner. It isin charge of creating a plan for the
execution of the transformations on a given data set and/or creating a plan for the re-
trieval of data from a storage system. The Request Planner has access to the system in-
formation retrieved by the Request Manager. To evaluate the cost of re-computation,
the cost of the transformations needs to be known. Thisinformation, aswell asthe input
and parameters required by a given transformation, code location, etc. are stored in the
Transformation Catalog. The Request Planner uses information about the transforma-
tionsthat have been regquested, to estimate the relative costs of computation vs. caching,
and so on. The system would possibly keep arecord of how long the various transfor-
mations took, and could use this performance history to estimate costs. This record and
the analytical performance estimates will be maintained in the Transformation Catal og.

The performance data needed in the evaluation of re-computation and replica access
costs (such as network performance, availability of computational resources, etc.) will
be provided by other information services, which are part of the Globus toolkit [9], a
software environment designed for the Grid infrastructure.

Once the request planner decides on a course of action the Request Executor is put in
charge of carrying out the plan which involves the allocation of resources, data move-
ment, fault monitoring, etc. The Request Executor will use the existing Globus infra-
structure to access the data and the computational Grid, and run largejobsreliably with
systems controlled by systems such as Condor [10]. Asaresult of the completion of the
reguest, the various catalogs might need to be updated.

3.3 Proactive Data Replication

Simply, just retrieving data from the replica catalog is not sufficient. The system must
take a proactive approach to creating replica files and decide whether the results of
transformations will be needed again. For example, if there is a request for a single
channel spanning along time interval and the replica catalog contains only files which
are multi-channel spanning short time periods, then a significant amount of processing
is needed to create the requested file (many files need to be opened and a small amount
of data needs to be retrieved from each of them). However, once this transformation is
performed, the resulting data can be placed in the replica catal og for future use, thus re-
ducing the cost of subsequent requests. New replicas should also be created for fre-
guently accessed data, if accessing the data from the available locations is too costly.
For example, it may be useful to replicate datathat initially resides on tapeto alocal file
system. Since the Request Manager has information about data existence, location and

computation costs, it will also be responsible for making decisions about replica crea
tion.

4 Conclusions

Although the GriPhyN project isonly initsinitial phase, its potential to enhance the re-
search of individual physicists and enable their wide-spread collaborationis great. This
paper presents the first step in bridging the understanding between the needs of the
physics community and the research focus of computer science to further the use and
deployment of grid technologies[11] onawidescale, intheform of aVirtual DataGrid.

References.
[1] Barish,B. C. and Weiss, R., Physics Today, Oct 1999, pp. 44-50; also http://www.li-
go.caltech.edu/

[2] Taylor, G., and Weisberg, J. M., Astrophys. J. 345, 434 (1989).

[3] Anderson,S., Blackburn, K., Lazzarini, A., Majid, W., Prince, T., Williams, R., TheLIGO
DataAnalysis System, Proc. of the X XX 1Vth Recontres de Moriond, January 23-30, 1999,
Les Arcs, France, also http://www.ligo.caltech.edu/docs/P/P990020-00.pdf

[4] Blackburn, K., Lazzarini, A., Prince, T., Williams, R., XSIL: Extensible Scientific Inter-
change Language, Lect. Notes Comput. Sci. 1593 (1999) 513-524.

[5] GriPhyN, Grid Physics Net, http://www.griphyn.org/

[6] CERN Large Hadron Collider, http://Ihc.web.cern.ch/Ihc/

[71 Sloan Digital Sky Survey, http://www.sdss.org/

[8] For information of XML and schemas, see http://www.xml.com/schemas
[9] Globus: http://www.globus.org

[10] Condor: http://www.cs.wisc.edu/condor/.

[11] Gridforum: http://www.gridforum.org/

