
Physics 106a, Caltech — 12 November, 2019

Lecture 13: Central Forces – Scattering States

In this lecture we discuss scattering problems, particularly Rutherford scattering in a 1/r potential.
First, some review.

Unbound Orbits in Central Potentials: Scattering

• Review of planetary orbits

• Repulsive 1/r potential: Rutherford scattering

• Scattering problems: what do we want to know?

• Particle trajectory for repulsive 1/r potential

• Rutherford scattering cross section

• Effect of finite target mass: kinematics and dynamics

Review of planetary orbits — Rotational symmetry

• Eliminate center of mass motion

• Angular momentum ~l is conserved

• Orbit lies in plane perpendicular to ~l: specify by (r, φ)

• Lagrangian for 2d motion

L =
1

2
µ(ṙ2 + r2φ̇2)− V (r)

• Constant of the motion
l = µr2φ̇

• Kepler’s second law: constant rate of sweeping out area; Ȧ = 1
2r

2φ̇ = l/2µ = constant.

Scattering Problems — Repulsive k/r potential

• Hamiltonian is total energy and is constant

E =
1

2
µṙ2 + Veff(r) with Veff(r) =

l2

2µr2
+ V (r)

• For V (r) = k
r (with k > 0), introduce u = 1

r so that ṙ = φ̇ drdφ = − l
µ
du
dφ

E =
l2

2µ

[(
du

dφ

)2

+

(
u+

1

p

)2

− 1

p2

]
with p =

l2

µk
> 0

• u(φ) is sinusoidal about −1/p
1

r
= −1

p
+
ε

p
cosφ

Physical solutions r > 0 for cosφ > 1/ε

• Conic section with eccentricity ε > 1 (hyperbola) and E = l2

2µp2
(ε2 − 1)
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Hyperbolic orbits: ε > 1

These exist for attractive potentials V (r) = −k/r, and also for repulsive ones V (r) = k/r. Note in
both cases I take k to be positive and I define p = l2/µk > 0. The equations are

Attractive, k > 0 1
r = 1

p [1 + ε cosφ] for cosφ > −1
ε

Repulsive, k < 0 1
r = 1

p [−1 + ε cosφ] for cosφ > 1
ε

(1)

with ε > 1, E > 0 (solutions for the repulsive case only exist for this range). Physical solutions
r > 0 only exist for the range of angles specified. The geometry of the orbits is shown in Fig. 1
(using the same value of k in the two cases). We see that for attractive potentials, the orbit passes
behind the focus (the sun), while for repulsive potentials the orbit passes in front of the focus.
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Figure 1: Hyperbolic orbits for attractive and repulsive 1/r potentials.

Rutherford scattering

The hyperbolic orbits for the repulsive case allow us to investigate the scattering of alpha particles
(charge 2|e|) off a nucleus (charge Z|e|). We will suppose the target nucleus is heavy, so that its recoil
is negligible and we can consider scattering off a fixed potential. In a scattering problem we have a
parallel beam of incident particles all with the same energy. The scattering angle θ is determined
by how close the alpha particle comes to the nucleus, which depends on the impact parameter bim
for that particle (see Fig. 2). We are usually interested in the rate of scattering of particles into a
scattering angle between θ and θ + dθ, which corresponds to a solid angle dΩ = 2π sin θdθ. These
particles are ones with an impact parameter between bim and bim + dbim, i.e. the particles hitting
an area dσ = 2πbimdbim (see Fig. 3).

Rutherford Scattering Experiment

Scattering of alpha particles off thin gold film [Geiger and Marsden, 1909].
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Figure 2: Two different views of the scattering geometry, showing the impact parameter bim
.

Figure 3: Relationship between the cross-sectional annulus (between b and b+db) and the scattering
angle.

The experimenters set up a beam of relatively light nuclei: alpha (α) particles, which are helium
nuclei, with mass AHemN , AHe = 4 and mn = 1/NA is the mass of a nucleon (proton or neutron,
almost the same). Avagadro’s number is NA = 6× 1023 nucleons per gram.

The target is a thin gold foil (thickness = `), composed of nuclei of mass AAump, AAu = 79.
Gold has a (macroscopic, well known) density of ρ = 19.32 g/cm3. They made the foil very thin
in the hope that a beam particle would typically scatter off of only one nucleus; else, it is multiple
scattering, requiring statistical analysis.

The beam “sees” an array of roughly spherical target nuclei that appear in “cross section”, as
circles. If the target is thin enough, the circles don’t overlap (no multiple scattering). The geometric

cross section is σg = πR2
N , where the nuclear radius RN = A

1/3
AuRn, where Rn = 1 × 10−13 cm (1

fm) is the radius of a nucleon (of course, Rutherford, Geiger and Marsden didn’t know that; the
point of their experiment was to measure the microscopic cross-section of the nucleus). In nuclear
physics, this is measured in units of barns, where 1 barn is 10−24 cm.

As we saw above, the cross-section really depends on scattering angle; it’s not a “black disk”
(hit or miss). Because it is microscopic, it must be properly computed in quantum mechanics
(you’ll do that in Ph 125), and of course, Rutherford, Geiger and Marsden didn’t know that either.
So the geometric cross-section is just an order-of-magnitude estimate of the total cross-section
σ =

∫
(dσ/dΩ)dΩ.

The beam is characterized by a flux J = Ṅbeam: a number of beam α particles per unit time.
Assuming we’re not in the multiple scattering regime, the probability of a beam particle hitting
a target nucleus is the cross-sectional area of the target σ divided by the area per target nucleus
ANmn/(ρ`) (again, ` is the thickness of the target). After a time t, Nbeam = Jt beam particles
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have impinged, and

Nscat = Nbeam
ρ`

ANmn
σ (2)

have scattered (verify this!). Everything in this equation is known (Nbeam, ρ, `, A, mn), or measured
(Nscat), except the microscopic nuclear cross-section σ, which is computed from this formula.

The number of scattered beam particles is measured as a function of scattering angle, Nscat(θ) =
dNscat/dθ (θ must be measurably greater than zero in order for the beam particle to be considered
as having scattered). From this we compute the measured microscopic differential cross-section
dσmeas/dΩ.

The differential scattering cross-section

The scattering is described by the differential scattering cross-section

dσ

dΩ
=

∣∣∣∣2πbimdbim2π sin θdθ

∣∣∣∣ =
bim
sin θ

∣∣∣∣dbimdθ
∣∣∣∣ (3)

(we put the mod in since dσ/dΩ is defined to be postive) so that all we need to know from the
hyperbolic orbit calculation is θ(bim). This is the topic of Hand and Finch problem 4-28. Here is
the solution.

We use the results for scattering off a 1/r potential. The trick is to relate the parameters of the
orbit calculation, in particular the energy E and angular momentum l, to those of the scattering
problem. Fig. 2:

E = 1
2µv

2
∞, l = µv∞bim, (4)

with v∞ the speed of the particles in the incident beam. Now use Eqs. (1) for the repulsive case
with p = l2/µk, k = ZAuZαe

2. Also, from Lecture 8, the energy is given in terms of the angular
momentum l and the eccentricity ε by

E =
l2

2µp2
(ε2 − 1) =

1

2

k2

l2/µ
(ε2 − 1) (5)

where the second expression is given by substituting for p. The scattering angle θ is given in terms
of ε by

θ = π − 2φ∞ where φ∞ = φ(r →∞) = cos−1

(
1

ε

)
(6)

again using Eq. (1) (see also Fig. 1). This gives sin(θ/2) = 1/ε, so that

E =
1

2

k2

l2/µ
[cosec2(θ/2)− 1] =

1

2

k2

l2/µ
cot2(θ/2). (7)

Equations (4) give
l2/µ = µv2

∞b
2
im = 2Eb2im. (8)

Substituting into Eq. (7), rearranging, and taking the square root gives

bim =
|k|
2E

cot

(
θ

2

)
, (9)

the relationship bim(θ) we need. Using Eq. (3) gives the Rutherford differential scattering cross-
section

dσ

dΩ
=

bim
sin θ

∣∣∣∣dbimdθ
∣∣∣∣ =

(
k

4E

)2 1

sin4 θ
2

. (10)
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Experimental Results - measuring the cross section

The experimental results came as a shock to Rutherford:

It was quite the most incredible event that has ever happened to me in my life. It was
almost as incredible as if you fired a 15-inch shell at a piece of tissue paper and it came
back and hit you.

On consideration, I realized that this scattering backward must be the result of a single
collision, and when I made calculations I saw that it was impossible to get anything of
that order of magnitude unless you took a system in which the greater part of the mass
of the atom was concentrated in a minute nucleus. It was then that I had the idea of
an atom with a minute massive center, carrying a charge.

[Ernest Rutherford]

We can compare the measured and theoretical cross-sections, varying some unknown parameter
until one gets a match. In the case of Geiger & Marsden, they considered one free parameter,
RN (the radius of the target nucleus). (The radius of the beam nucleus is approximated to be
negligible; or, one is measuring the joint beam-target cross-section.)
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containing Z protons. The N alpha particles scattered at angles between ! and
! ! d! pass through a portion of a spherical surface of radius r centered on the
scattering nucleus in the foil as shown in Figure 4-10. The area of that surface is
Asurf " (2"r sin !)(r d!). Thus, the number of # particles scattered from a single
nucleus per unit area at angles between ! and ! ! d! is given by6

2 2N I kZe 10" 4-9! "2 2 4A r m v sin (!/2)surf #

Rutherford’s nuclear model thus predicts that the number of # particles $N1 ob-
served on the scintillation screen of area Asc due to a single nucleus (see Figure
4-10) would be given by

2 2N I A kZe 10 sc$N " A " 4-101 sc ! "2 2 4A r m v sin (!/2)surf #

Since the number of scattering nuclei per unit area of the foil is nt, the scintillation
detector should observe a total $N " nt $N1 particles with scattering angles between
! and ! ! d!, where

2 2I A nt kZe 10 sc$N " 4-6! "! "2 4r 2E sin (!/2)k

where we have written for the kinetic energy of the incident # particles.1 2E " m vk #2
Equation 4-6 is the prediction of Rutherford’s nuclear model for the number $N

of particles that would reach the scintillation detector. Note that Equation 4-6 pre-
dicts that $N will be proportional to sin#4 (!/2), to Z2, to t, and to Figure#2E .k

4-11 illustrates the data obtained by Geiger and Marsden for the number of scattered
# particles per unit area versus ! (Equation 4-9). The kinetic energy Ek of the incident
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Fig. 4-10 Particles scattered at angles between ! and ! ! d! fall onto the portion of a spherical
surface of radius r centered on the foil. The area of that surface is (2"r sin !)(r d!) " Asurf. The
scintillation screen is located at the distance r from the foil and occupies a fraction fsc of that area
equal to the (area of screen)/(area of surface) " Asc/Asurf " fsc, and thus sees a number of
particles due to scattering from a single nucleus.$N " (N/A )(A ) " N f1 surf sc sc

Continued

Fig. 4-11 The number of
scattered # particles per unit
area as a function of !. The
solid curve is sin#4 The1 !.2

data are from Geiger and
Marsden for 7.7-MeV #
particles. [From R. D. Evans, The
Atomic Nucleus, McGraw-Hill, New
York, 1955.]

From The Atomic Nucleus by R. D. Evans

The closest distance of approach was 30 fm (3×10−14m) for 7.78 MeV alpha particle at 150 deg
scattering. So they concluded that RN < 30 fm, or Rn < 30/(79)1/3 = 7 fm, which was much
smaller than the distance between atoms in gold. Hence, Rutherford’s great surprise. (As mentioned
above, we now know Rn = 1 fm.)

Finite mass target particle

If the target particle is not infinitely heavy, it will recoil in the scattering, and the scattering
problem is more complicated: for example the energy and speed of the outgoing scattered particle
(in the lab frame) will not be the same as the incoming values. The scattering problem separates
into two parts: the dynamics – the probability of scattering at some angle which depends on solving
for the particle trajectories in the interaction potential as we have just done; and the kinematics –
how the outgoing energy depends on the scattering angle, what is the momentum of the outgoing
target particle etc., which are determined simply by conservation of energy and momentum. The
scattering with a finite mass target is most easily addressed by transforming to the center of mass
frame, solving for the dynamics there, and then transforming back to the original “laboratory”
frame.
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Kinematics

v∞ θlab θcmvin

vout

Vin
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Lab frame CM frame

Figure 4: Scattering geometry in the lab and center of mass frames. Only the incoming and
outgoing velocity vectors (not the details of the trajectory etc.) are depicted. In the center of mass
frame the incoming velocities are colinear, as are the outgoing velocities. Also the outgoing speed
is the same as the incoming speed for that particle.

In the center of mass frame the scattering geometry is simple. Calling the velocity of the mass m
particle ~v and that of the mass M particle ~V for elastic scattering |~vout| = |~vin| and |~Vout| = |~Vin|.
Also m~vin,out = −M~Vin,out since the total momentum is zero. If in the laboratory frame the
incoming velocity of the mass m particles is v∞x̂, the center of mass velocity is

~Vcm =
m

M +m
v∞x̂, (11)

and the incoming velocity of the mass m in the center of mass frame is

~vin|cm = v∞x̂− ~Vcm =
M

M +m
v∞x̂. (12)

Since the speed is the same after the scattering

~vout|cm =
M

M +m
v∞(cos θcmx̂+ sin θcmŷ). (13)

Transforming back to the laboratory frame by adding ~Vcm to all the velocities

~vout|lab =
M

M +m
v∞[(cos θcm +m/M)x̂+ sin θcmŷ]. (14)

This gives the scattering angle θlab in the laboratory frame

tan θlab =
sin θcm

cos θcm +m/M
. (15)

Dynamics

Now I calculate the scattering dynamics in the center of mass frame. The particle trajectories in
the center of mass frame are given by

~rm(t) =
M

M +m
~r(t), ~rM (t) = − m

M +m
~r(t), (16)

where ~r = ~rm − ~rM is the difference coordinate used in the orbit calculation. These are just scaled
(and flipped in the later case) versions of the hyperbola traced out by ~r(t), as shown in Fig. 5. This
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Figure 5: Scattering hyperbolas for a particle of mass m off one with mass M with M/m = 3: the
dashed curve is the hyperbola traced out by the difference coordinate ~r = ~rm − ~rM given by the
orbit calculation. I used p = 1 and an eccentricity ε = 1.2 which fixes the scattering angle as 146◦.
The red curve is the trajectory of particle m given by ~rm(t) and the blue curve is the trajectory of
particle M given by ~rM (t), both in the center of mass frame. The foci of the hyperbolas are all at
the origin. The curves are plotted over the same time interval, and the heavy mass moves a smaller
distance than the light mass. The red and blue arrows are ~rm, ~rM at some particular time.

means that the scattering angle θcm of particle m in the center of mass frame is the same as the
scattering angle of the reduced mass µ scattering off a stationary center calculated in the previous
section.

To calculate the differential scattering cross-section in the laboratory frame from the differential
scattering cross section calculated for the reduced mass particle in the previous section, use the
fact that the incoming fluxes are the same (both incoming speeds are ~v∞ ) and 2π sin θ dσ/dΩ dθ
counts the same outcoming particles when evaluated in the two frames. Thus

dσ

dΩ

∣∣∣∣
lab

=
sin θcm

sin θlab

dθcm

dθlab

dσ

dΩ

∣∣∣∣
cm

, (17)

with θcm, θlab related by Eq. (15).
See the discussion in §3.11 of Goldstein, Poole and Safko for more details.
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