What can gravitational waves do to probe early cosmology?

Barry C. Barish
Caltech

"Kavli-CERCA Conference on the Future of Cosmology"
Case Western Reserve University
October 10-12, 2003
Signals from the Early Universe

The smaller the cross-section, the earlier the particle decouples

- **Photons:** \(T = 0.2 \text{ eV} \) \(t = 300,000 \text{ yrs} \)
- **Neutrinos:** \(T = 1 \text{ MeV} \) \(t \sim 1 \text{ sec} \)
- **Gravitons:** \(T = 10^{19} \text{ GeV} \) \(t \sim 10^{-43} \text{ sec} \)

Cosmic Microwave background

WMAP 2003
Primordial stochastic backgrounds: *relic GWs produced in the early Universe*

- Cosmology
- Unique laboratory for fundamental physics at very high energy
Astrophysically generated stochastic backgrounds (foregrounds): *incoherent superposition of GWs from large populations of astrophysical sources*

- Populations of compact object in our galaxy and at high redshift
- 3D distribution of sources
- Star formation history
The Gravitational Wave Signal

- The spectrum:

\[\Omega_{gw}(f) \equiv \frac{1}{\rho_c} \frac{d\rho_{gw}(f)}{d \ln f} \]

- The characteristic amplitude

\[h_c(f, \Delta f) \approx 7.1 \times 10^{-22} \left[\frac{h_{100}^2 \Omega_{gw}(f)}{10^{-8}} \right]^{1/2} \left(\frac{f}{1 \text{ mHz}} \right)^{-3/2} \left(\frac{\Delta_b f}{3.17 \times 10^{-8} \text{ Hz}} \right)^{1/2} \]
What we know

limits on primordial backgrounds

White dwarf and neutron star binary system has second clock, the orbital period! Change in orbital period can be computed in GR, simplifying fitting. Gives limit from 10^{-11} to 4.4×10^{-9} Hz

ms pulsars are fantastic clocks! Stability places limit on gravitational waves passing between the pulsar and us. Integrating for one year gives limit at $f \sim 4.4 \times 10^{-9}$ Hz
Theoretical Predictions

Maggiore 2000
Expected Signal Strength

-5
-10
-15

log Omega(f)

Nucleosynthesis

Slow-roll inflation
Detection of Gravitational Waves

Gravitational Wave Astrophysical Source

Terrestrial detectors
Virgo, LIGO, TAMA, GEO AIGO

Detectors in space
LISA
Astrophysics Sources

frequency range

- Gravitational Waves can be studied over ~10 orders of magnitude in frequency
 - terrestrial + space
Interferometer Concept

- Laser used to measure relative lengths of two orthogonal arms
- Arms in LIGO are 4km
- Measure difference in length to one part in 10^{21} or 10^{-18} meters

...causing the interference pattern to change at the photodiode
International Network

- Network Required for:
 - Detection Confidence
 - Waveform Extraction
 - Direction by Triangulation

+ “Bar Detectors” : Italy, Switzerland, Louisiana, Australia
Stochastic Background Signal

auto-correlation
Overlap Reduction Function

(LIGO–LA and other detectors)

- LIGO–WA
- ALLEGRO (co-aligned)
- ALLEGRO (mis-aligned)
- GEO–600

Frequency (Hz)
Simultaneous Detection

LIGO

- **Hanford Observatory**
- **Caltech**
- **Livingston Observatory**
- **MIT**

Distance: 3002 km
(V/c = 10 ms)
LIGO Livingston Observatory
LIGO Hanford Observatory
What Limits LIGO Sensitivity?

- Seismic noise limits low frequencies
- Thermal Noise limits middle frequencies
- Quantum nature of light (Shot Noise) limits high frequencies
- Technical issues - alignment, electronics, acoustics, etc limit us before we reach these design goals
LIGO Sensitivity

Livingston 4km Interferometer

First Science Run
17 days - Sept 02

Second Science Run
59 days - April 03
Signals from the Early Universe

- **Strength specified by** ratio of energy density in GWs to total energy density needed to close the universe:

\[
\Omega_{GW}(f) = \frac{1}{\rho_{\text{critical}}} \frac{d\rho_{GW}}{d(lnf)}
\]

- **Detect by cross-correlating** output of two GW detectors:

First LIGO Science Data

Hanford - Livingston
Limits: Stochastic Search

<table>
<thead>
<tr>
<th>Interferometer Pair</th>
<th>90% CL Upper Limit</th>
<th>T_{obs}</th>
</tr>
</thead>
<tbody>
<tr>
<td>LHO 4km-LLO 4km</td>
<td>$\Omega_{\text{GW}}(40\text{Hz} - 314\text{Hz}) < 72.4$</td>
<td>62.3 hrs</td>
</tr>
<tr>
<td>LHO 2km-LLO 4km</td>
<td>$\Omega_{\text{GW}}(40\text{Hz} - 314\text{Hz}) < 23$</td>
<td>61.0 hrs</td>
</tr>
</tbody>
</table>

- Non-negligible LHO 4km-2km (H1-H2) instrumental cross-correlation; currently being investigated.

- Previous best upper limits:
 - Garching-Glasgow interferometers: $\Omega_{\text{GW}}(f) < 3 \times 10^5$
 - EXPLORER-NAUTILUS (cryogenic bars): $\Omega_{\text{GW}}(907\text{Hz}) < 60$
Gravitational Waves from the Early Universe

Results
Projected

Log[Ω_GW]
-14
-12
-10
-8
-6
-4
-2
0
2
4
6
Log [f, Hz]
-16
-14
-12
-10
-8
-6
-4
-2
0
2
4
6

SCOBE

Inflation

Cosmic Strings

Pulsar Timing

Phase Transitions

Nucleosynthesis

Adv LIGO

1IFO + IFO
8Bar + Bar (Warm)
9Bar + Bar (Cryo.)
1IFO + Bar (1st Gen.)
1IFO + Bar (2nd Gen.)
IFO (1st Gen.)
IFO (2nd Gen.)

LIGO

S1

S2

E7
Interferometers in Space

The Laser Interferometer Space Antenna (LISA)

- The center of the triangle formation will be in the ecliptic plane
- 1 AU from the Sun and 20 degrees behind the Earth.
LISA: Sources and Sensitivity
LISA: Astrophysical Backgrounds

LISA and GW Background Radiation
r.m.s. amplitudes after 1 year of observation

Compact WD binary background -- estimate
LISA's instrumental noise budget
Possible cosmological gw background, $\Omega_{gw} = 10^{-10}$
Possible cosmological gw background, $\Omega_{gw} = 10^{-8}$
Detecting the Anisotropy

(1) Break-up the yrs long data set in short (say a few hrs long) chunks

\[\tilde{o}(f; t) = \int_{t-\tau/2}^{t+\tau/2} dt' e^{-2\pi i f t'} o(t') \]

(2) Construct the new signal

\[S(t) = \int_{-\infty}^{+\infty} df \tilde{o}_j(f, t) \tilde{Q}(f) \tilde{o}_k^*(f, t) \]

The LISA motion is periodic

\[\langle S(t) \rangle = \sum_{-\infty}^{+\infty} e^{i2\pi mt/T} \langle S_m \rangle \]

(3) Search for peaks in \(S(t) \):

\[S_m = \frac{1}{T_{\text{obs}}} \int_0^{T_{\text{obs}}} e^{-i2\pi mt/T} S(t) \, dt \]

\(S_m \) is the observable
Instrument’s sensitivity

\[h_{100}^2 \Omega_{\text{min}} = \frac{K}{T^{1/2}} \sqrt{\frac{50\pi^2}{3H_0^2}} \left[\int_0^{\infty} df \frac{\gamma^2(f)}{f^6 S_n^2(f)} \right]^{-1/2} \]
Sensitivity

Primordial Stochastic Background
Stochastic Background

Astrophysical Foregrounds

- White-dwarf binary systems (galactic and extra-galactic) \((Hils \ et \ al, \ 1990; \ Schneider \ et \ al, \ 2001) \)

- Neutron star binary systems (galactic and extra-galactic) \((Schneider \ et \ al, \ 2001) \)

- Rotating neutron stars (galactic and extra-galactic) \((Giazzotto \ et \ al, \ 1997; \ Regimbau \ and \ de \ Freitas \ Pacheco, \ 2002) \)

- Solar mass compact objects orbiting a massive black hole (extra-galactic) \((Phinney \ 2002) \)

- Super-massive black hole binaries (extra-galactic) \((Rajagopal \ and \ Romani, \ 1995) \)
Astrophysical Signals

Limit Sensitivity for Primordial Sources

![Graph showing sensitivity limits for different types of sources (extra-galactic NS-NS, WD-WD, and WDS-WD) compared to LISA - 1yr sensitivity.]
Ultimate GW Stochastic Probes

31

-11

-12

-13

-14

-15

-16

$log \Omega(f)$

$log f$

$LISA$ sensitivity limit (1yr)

3^{rd} generation sensitivity limit (1yr)

$WD-WD$

$NS-NS$

$BH-MBH$

NS

CORRUPTED

CLEAN

$\hbar^{2} \epsilon_{p}^{(\text{min})} \approx 8 \times 10^{-17} \left(\frac{f}{0.1 \text{ Hz}} \right)^{3/2} \left(\frac{T}{10^8 \text{ sec}} \right)^{-1/2} \left[\frac{h_{\text{rms}}}{10^{-24}} \right]^2$
Future experiments in the “gap” (?)

A. Vecchio
Conclusions

- Primordial Gravitational Wave Stochastic Background is potentially a powerful probe of early cosmology
- Present/planned earth/space-based interferometers will begin to probe the sensitivity regime of interest.
- They will either set limits constraining early cosmology or detect the stochastic background
- They are ultimately limited to $\sim 10^{-11}$ and 10^{-13} in energy density
- A future short arm space probe could probe the gap (0.1 – 1 Hz region looks cleanest)