The Search for Gravitational Waves

Barry Barish

Sydney, AIP Conference
11-July-02
Einstein’s Theory of Gravitation

Newton’s Theory

“instantaneous action at a distance”

Einstein’s Theory

information carried by gravitational radiation at the speed of light
Einstein theorized that smaller masses travel toward larger masses, not because they are "attracted" by a mysterious force, but because the smaller objects travel through space that is warped by the larger object.

- Imagine space as a stretched rubber sheet.
- A mass on the surface will cause a deformation.
- Another mass dropped onto the sheet will roll toward that mass.
Einstein’s Theory of Gravitation

experimental tests

Mercury’s orbit

perihelion shifts forward an extra +43”/century compared to Newton’s theory

Mercury’s elliptical path around the Sun shifts slightly with each orbit such that its closest point to the Sun (or "perihelion") shifts forward with each pass.

Astronomers had been aware for two centuries of a small flaw in the orbit, as predicted by Newton's laws.

Einstein's predictions exactly matched the observation.
New Wrinkle on Equivalence

bending of light

- Not only the path of matter, but even the path of light is affected by gravity from massive objects

 - First observed during the solar eclipse of 1919 by Sir Arthur Eddington, when the Sun was silhouetted against the Hyades star cluster

 - Their measurements showed that the light from these stars was bent as it grazed the Sun, by the exact amount of Einstein's predictions.

 The light never changes course, but merely follows the curvature of space. Astronomers now refer to this displacement of light as gravitational lensing.
Einstein’s Theory of Gravitation

experimental tests

“Einstein Cross”
The bending of light rays
gravitational lensing

Quasar image appears around the central glow formed by nearby galaxy. The Einstein Cross is only visible in southern hemisphere.

In modern astronomy, such gravitational lensing images are used to detect a ‘dark matter’ body as the central object.
Einstein’s Theory of Gravitation

gravitational waves

- a necessary consequence of Special Relativity with its finite speed for information transfer

- time dependent gravitational fields come from the acceleration of masses and propagate away from their sources as a space-time warpage at the speed of light

gravitational radiation

binary inspiral of compact objects
Gravitational Waves

the evidence

Neutron Binary System – Hulse & Taylor
PSR 1913 + 16 -- Timing of pulsars

Neutron Binary System
- separated by 10^6 miles
- $m_1 = 1.4m_\odot$; $m_2 = 1.36m_\odot$; $\epsilon = 0.617$

Prediction from general relativity
- spiral in by 3 mm/orbit
- rate of change of orbital period

Emission of gravitational waves

Comparison between observations of the binary pulsar PSR1913+16, and the prediction of general relativity based on loss of orbital energy via gravitational waves

Einstein’s Theory of Gravitation

gravitational waves

- Using Minkowski metric, the information about space-time curvature is contained in the metric as an added term, $h_{\mu \nu}$. In the weak field limit, the equation can be described with linear equations. If the choice of gauge is the *transverse traceless gauge* the formulation becomes a familiar wave equation.

\[
(\nabla^2 - \frac{1}{c^2} \frac{\partial^2}{\partial t^2}) h_{\mu \nu} = 0
\]

- The strain $h_{\mu \nu}$ takes the form of a plane wave propagating at the speed of light (c).

- Since gravity is spin 2, the waves have two components, but rotated by 45° instead of 90° from each other.

\[
h_{\mu \nu} = h_+ (t - z / c) + h_\times (t - z / c)
\]
Direct Detection

Laboratory experiment

"gedanken experiment" a la Hertz

Experimental Generation and Detection of Gravitational Waves

- $f_{rot} = 1 \text{ kHz}$
- $h_{lab} = 2.6 \times 10^{-33} \text{ m x 1/R}$
- $R = \text{detector distance (}> 1 \text{ wavelength}) = 300 \text{ km}$
- $h_{lab} = 9 \times 10^{-39}$

This is too weak by about 16 orders of magnitude!
Direct Detection

astrophysical sources

Detectors in space
LISA

Gravitational Wave Astrophysical Source

Terrestrial detectors
LIGO, TAMA, Virgo, AIGO
Astrophysical Sources

signatures

- **Compact binary inspiral:** "chirps"
 - NS-NS waveforms are well described
 - BH-BH need better waveforms
 - search technique: matched templates

- **Supernovae / GRBs:** "bursts"
 - burst signals in coincidence with signals in electromagnetic radiation
 - prompt alarm (~ one hour) with neutrino detectors

- **Pulsars in our galaxy:** "periodic"
 - search for observed neutron stars (frequency, doppler shift)
 - all sky search (computing challenge)
 - r-modes

- **Cosmological Signals background** "stochastic"
Interferometers

The Laser Interferometer Space Antenna (LISA)

• The center of the triangle formation will be in the ecliptic plane

• 1 AU from the Sun and 20 degrees behind the Earth.
International network (LIGO, Virgo, GEO, TAMA, AIGO) of suspended mass Michelson-type interferometers on earth’s surface detect distant astrophysical sources.
Astrophysics Sources

frequency range

- EM waves are studied over ~20 orders of magnitude
 - (ULF radio → HE γ-rays)

- Gravitational Waves over ~10 orders of magnitude
 - (terrestrial + space)
Suspended Mass Interferometer

the concept

- An interferometric gravitational wave detector
 - A laser is used to measure the relative lengths of two orthogonal cavities (or arms)
- Arms in LIGO are 4km
 - Current technology then allows one to measure $h = \frac{\delta L}{L} \sim 10^{-21}$ which turns out to be an interesting target

...causing the interference pattern to change at the photodiode

As a wave passes, the arm lengths change in different ways....
How Small is 10^{-18} Meter?

- $\div 10,000$ \(\leftarrow\) One meter, about 40 inches
- $\div 100$ \(\downarrow\) Human hair, about 100 microns
- $\div 10,000$ \(\triangleleft\) Wavelength of light, about 1 micron
- $\div 10,000$ \(\bullet\) Atomic diameter, 10^{-10} meter
- $\div 100,000$ \(\circ\) Nuclear diameter, 10^{-15} meter
- $\div 1,000$ \(\rightarrow\) LIGO sensitivity, 10^{-18} meter
What Limits Sensitivity of Interferometers?

- Seismic noise & vibration limit at low frequencies
- Atomic vibrations (Thermal Noise) inside components limit at mid frequencies
- Quantum nature of light (Shot Noise) limits at high frequencies
- Myriad details of the lasers, electronics, etc., can make problems above these levels
Noise Floor

40 m prototype

• displacement sensitivity in 40 m prototype.

• comparison to predicted contributions from various noise sources
Phase Noise

splitting the fringe

- spectral sensitivity of MIT phase noise interferometer
- above 500 Hz shot noise limited near LIGO I goal
- additional features are from 60 Hz powerline harmonics, wire resonances (600 Hz), mount resonances, etc

expected signal $\rightarrow 10^{-10}$ radians phase shift

demonstration experiment
Interferometers

international network

Simultaneously detect signal (within msec)

detection confidence
locate the sources
decompose the polarization of gravitational waves
Interferometers

international network

LIGO (Washington)
LIGO (Louisiana)
Interferometers

international network

GEO 600 (Germany)
Virgo (Italy)
Interferometers

international network

TAMA 300 (Japan) AIGO (Australia)
E7 Run Summary

LIGO + GEO Interferometers

Courtesy G. Gonzalez & M. Hewiston

28 Dec 2001 - 14 Jan 2002 (402 hr)

Singles data

<table>
<thead>
<tr>
<th></th>
<th>All segments</th>
<th>Segments >15min</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1 locked</td>
<td>284hrs (71%)</td>
<td>249hrs (62%)</td>
</tr>
<tr>
<td>L1 clean</td>
<td>265hrs (61%)</td>
<td>251hrs (55%)</td>
</tr>
<tr>
<td>L1 longest clean segment: 3:58</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H1 locked</td>
<td>294hrs (72%)</td>
<td>231hrs (57%)</td>
</tr>
<tr>
<td>H1 clean</td>
<td>267hrs (62%)</td>
<td>206hrs (48%)</td>
</tr>
<tr>
<td>H1 longest clean segment: 4:04</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H2 locked</td>
<td>214hrs (53%)</td>
<td>157hrs (39%)</td>
</tr>
<tr>
<td>H2 clean</td>
<td>162hrs (38%)</td>
<td>125hrs (28%)</td>
</tr>
<tr>
<td>H2 longest clean segment: 7:24</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Coincidence Data

<table>
<thead>
<tr>
<th></th>
<th>All segments</th>
<th>Segments >15min</th>
</tr>
</thead>
<tbody>
<tr>
<td>2X: H2, L1 locked</td>
<td>160hrs (39%)</td>
<td>99hrs (24%)</td>
</tr>
<tr>
<td>clean</td>
<td>113hrs (26%)</td>
<td>70hrs (16%)</td>
</tr>
<tr>
<td>H2,L1 longest clean segment: 1:50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3X : L1+H1+ H2 locked</td>
<td>140hrs (35%)</td>
<td>72hrs (18%)</td>
</tr>
<tr>
<td>clean</td>
<td>93hrs (21%)</td>
<td>46hrs (11%)</td>
</tr>
<tr>
<td>L1+H1+ H2 : longest clean segment: 1:18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4X: L1+H1+ H2 +GEO:</td>
<td>77 hrs (23%)</td>
<td>26.1 hrs (7.81 %)</td>
</tr>
<tr>
<td>5X: ALLEGRO + ...</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Strain Spectra for E7
comparison with design sensitivity

[Graph showing strain spectra with LIGO I Design highlighted]
Astrophysical Signatures

E7 data

- **Compact binary inspiral:** "chirps"
 - NS-NS waveforms are well described
 - BH-BH need better waveforms
 - search technique: matched templates

- **Supernovae / GRBs:** "bursts"
 - burst signals in coincidence with signals in electromagnetic radiation
 - prompt alarm (~ one hour) with neutrino detectors

- **Pulsars in our galaxy:** "periodic"
 - search for observed neutron stars (frequency, doppler shift)
 - all sky search (computing challenge)
 - r-modes

- **Cosmological Signals**
 - "stochastic background"
“Stochastic Background”

cosmological signals

‘Murmurs’ from the Big Bang

signals from the early universe

Cosmic microwave background

Gravitational Waves

Neutrinos

Photons

Big Bang Singularity

Planck Time

10^{-43} SECONDS

Singularity creates Space & Time of our universe

1 SECOND

100,000 YEARS

10 billion YEARS

Earth Now

Saskatoon 3 Year Data

COBE DMR 4 Year Data
Stochastic Background

sensitivity

- **Detection**
 - Cross correlate Hanford and Livingston Interferometers

- **Good Sensitivity**
 - GW wavelength $\geq 2\times$ detector baseline $\Rightarrow f \leq 40$ Hz

- **Initial LIGO Sensitivity**
 - $\Omega \geq 10^{-5}$

- **Advanced LIGO Sensitivity**
 - $\Omega \geq 5 \times 10^{-9}$
Stochastic Background

coherence plots LHO 2K & LHO 4K
Stochastic Background

coherence plot LHO 2K & LLO 4K
Stochastic Background

projected sensitivities
LIGO

conclusions

- LIGO construction complete
- LIGO commissioning and testing ‘on track’
- Engineering test runs underway, during period when emphasis is on commissioning, detector sensitivity and reliability. (Short upper limit data runs interleaved)
- First Science Search Run: first search run will begin during 2003
- Significant improvements in sensitivity anticipated to begin about 2006